Ээг принцип работы – что это такое, что показывает обследование электроэнцефалографии, как подготовиться к процедуре и как ее делают взрослым

Оглавление

МЕТОДЫ ПСИХОФИЗИОЛОГИИ 1

2.1.2. Вызванные потенциалы головного мозга 8

2.1.3. Топографическое картирование электрической активности мозга (ТКЭАМ) 11

2.1.4. Компьютерная томография (КТ) 12

2.1.6. Методы воздействия на мозг 15

2.2. Электрическая активность кожи 17

Психофизиологические методы 23

Регистрация импульсной активности нервных клеток 28

Электрическая активность кожи 33

Прикладная психофизиология. ЭЭГ при патологиях. 33

Эпилепсия 33

Долгосрочная регистрация электроэнцефалограммы и ЭЭГ-видео-мониторинг 34

Характеристики электроэнцефалограммы при наиболее распространённых формах эпилепсии и эпилептических синдромов 35

Шизофрения 37

Электроэнцефалографическое исследование при психических и интеллектуальных нарушениях. 40

Неврозы 41

Методы психофизиологии

В этом разделе будут представлены систематика, способы регистрации и значение физиологических показателей, связанных с психической деятельностью человека. Психофизиология — экспериментальная дисциплина, поэтому интерпретационные возможности психофизиологических исследований в значительной степени определяются совершенством и разнообразием применяемых методов. Правильный выбор методики, адекватное использование ее показателей и соответствующее разрешающим возможностям методики истолкование полученных результатов являются условиями, необходимыми для проведения успешного психофизиологического исследования.

2.1. Методы изучения работы головного мозга

Центральное место в ряду методов психофизиологического исследования занимают различные способы регистрации электрической активности центральной нервной системы, и в первую очередь головного мозга.

2.1.1. Электроэнцефалография

Электроэнцефалография — метод исследования головного мозга с помощью регистрации разности электрических потенциалов, возникающих в процессе его жизнедеятельности. Регистрирующие электроды располагают в определённых областях головы так, чтобы на записи были представлены все основные отделы мозга. Получаемая запись —электроэнцефалограмма (ЭЭГ)— является суммарной электрической активностью многих миллионов нейронов, представленной преимущественно потенциалами дендритов и тел нервных клеток: возбудительными и тормозными постсинаптическими потенциалами и частично — потенциалами действия тел нейронов и аксонов. Таким образом, ЭЭГ отражает функциональную активность головного мозга. Наличие регулярной ритмики на ЭЭГ свидетельствует, что нейроны синхронизуют свою активность. В норме эта синхронизация определяется главным образом ритмической активностью пейсмейкеров (водителей ритма) неспецифических ядер таламуса и их таламокортикальных проекций.

Электроэнцефалография — метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга. Последнее у человека возможно лишь в клинических условиях.           В 1929 г. австрийский психиатрХ. Бергеробнаружил, что с поверхности черепа можно регистрировать «мозговые волны». Он установил, что электрические характеристики этих сигналов зависят от состояния испытуемого. Наиболее заметными были синхронные волны относительно большой амплитуды с характерной частотой около 10 циклов в секунду. Бергер назвал их альфа-волнами и противопоставил их высокочастотным «бета-волнам», которые проявляются тогда, когда человек переходит в более активное состояние. Открытие Бергера привело к созданию электроэнцефалографического метода изучения мозга, состоящего в регистрации, анализе и интерпретации биотоков мозга животных и человека.           Одна из самых поразительных особенностей ЭЭГ — ее спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (т.е. до рождения организма) и прекращается только с наступлением смерти. Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн.           Сегодня ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных для психофизиолога.

Условия регистрации и способы анализа ЭЭГ.В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входит звукоизолирующая экранированная камера, оборудованное место для испытуемого, моногоканальные усилители, регистрирующая аппаратура (чернилопишущий энцефалограф, многоканальный магнитофон). Обычно используется от 8 до 16 каналов регистрации ЭЭГ от различных участков поверхности черепа одновременно. Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. В последнем случае необходимо специальное программное обеспечение.

Следует подчеркнуть, что подобное разбиение на группы более или менее произвольно, оно не соответствует никаким физиологическим категориям. Зарегистрированы и более медленные частоты электрических потенциалов головного мозга вплоть до периодов порядка нескольких часов и суток. Запись по этим частотам выполняется с помощью ЭВМ.

Основные ритмы и параметры энцефалограммы. 1. Альфа-волна — одиночное двухфазовое колебание разности потенциалов длительностью 75-125 мс., по форме приближается к синусоидальной. 2. Альфа-ритм — ритмическое колебание потенциалов с частотой 8-13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя, средняя амплитуда 30-40 мкВ, обычно модулирован в веретена. 3. Бета-волна — одиночное двухфазовое колебание потенциалов длительностью менее 75 мс. и амплитудой 10-15 мкВ (не более 30). 4. Бета-ритм — ритмическое колебание потенциалов с частотой 14-35 Гц. Лучше выражен в лобно-центральных областях мозга. 5. Дельта-волна — одиночное двухфазовое колебание разности потенциалов длительностью более 250 мс. 6. Дельта-ритм — ритмическое колебание потенциалов с частотой 1-3 Гц и амплитудой от 10 до 250 мкВ и более. 7. Тета-волна — одиночное, чаще двухфазовое колебание разности потенциалов длительностью 130-250 мс. 8. Тета-ритм — ритмическое колебание потенциалов с частотой 4-7 Гц, чаще двухсторонние синхронные, с амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга.

Другая важная характеристика электрических потенциалов мозга — амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн.           Важное значение при регистрации ЭЭГ имеет расположение электродов, при этом электрическая активность одновременно регистрируемая с различных точек головы может сильно различаться. При записи ЭЭГ используют два основных метода: биполярный и монополярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи регистрируется ЭЭГ, представляющая результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной записи — активность какого-то одного отведения относительно электрически нейтральной точки (например, лобного или затылочного отведения относительно мочки уха). Выбор того или иного варианта записи зависит от целей исследования. В исследовательской практике шире используется монополярный вариант регистрации, поскольку он позволяет изучать изолированный вклад той или иной зоны мозга в изучаемый процесс.           Международная федерация обществ электроэнцефалографии приняла так называемую систему «10-20», позволяющую точно указывать расположение электродов. В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками. Возможные точки расположения электродов разделены интервалами, составляющими 10% или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области, обозначенные буквами: F — лобная, О — затылочная область, Р — теменная, Т — височная, С — область центральной борозды. Нечетные номера мест отведения относятся к левому, а четные — к правому полушарию. Буквой Z — обозначается отведение от верхушки черепа. Это место называется вертексом и его используют особенно часто(см. Хрестомат. 2.2).

 

Система 10-20 (Jasper, 1958). Расположение электродов на поверхности головы: F — лобная часть; C — центральная; P — теменная; T — височная; O — затылочная. Нечетные индексы — левая половина головы, четные индексы — правая, Z — средняя линия

Клинический и статический методы изучения ЭЭГ.С момента возникновения выделились и продолжают существовать как относительно самостоятельные два подхода к анализу ЭЭГ: визуальный (клинический) и статистический.Визуальной (клинический) анализ ЭЭГиспользуется, как правило, в диагностических целях. Электрофизиолог, опираясь на определенные способы такого анализа ЭЭГ, решает следуюшие вопросы: соответствует ли ЭЭГ общепринятым стандартам нормы; если нет, то какова степень отклонения от нормы, обнаруживаются ли у пациента признаки очагового поражения мозга и какова локализация очага поражения. Клинический анализ ЭЭГ всегда строго индивидуален и носит преимущественно качественный характер. Несмотря на то, что существуют общепринятые в клинике приемы описания ЭЭГ, клиническая интерпретация ЭЭГ в большей степени зависит от опыта электрофизиолога, его умения «читать» электроэнцефалограмму, выделяя в ней скрытые и нередко очень вариативные патологические признаки.           Следует, однако, подчеркнуть, что в широкой клинической практике грубые макроочаговые нарушения или другие отчетливо выраженные формы патологии ЭЭГ встречаются редко. Чаще всего (70-80% случаев) наблюдаются диффузные изменения биоэлектрической активности мозга с симптоматикой, трудно поддающейся формальному описанию. Между тем именно эта симптоматика может представлять особый интерес для анализа того контингента испытуемых, которые входят в группу так называемой «малой» психиатрии — состояний, граничащих между «хорошей» нормой и явной патологией. Именно по этой причине сейчас предпринимаются особые усилия по формализации и даже разработки компьютерных программ для анализа клинической ЭЭГ.

Статистические методы исследованияэлектроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты.           Преобразование Фурье позволяет преобразовать волновойпаттернфоновой ЭЭГ в частотный и установить распределение мощности по каждой частотной составляющей. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. На этой основе выделяются новые показатели, расширяющие содержательную интерпретацию ритмической организации биоэлектрических процессов.           Например, специальную задачу составляет анализ вклада, или относительной мощности, разных частот, которая зависит от амплитуд синусоидальных составляющих. Она решается с помощью построения спектров мощности. Последний представляет собой совокупность всех значений мощности ритмических составляющих ЭЭГ, вычисляемых с определенным шагом дискретизации (в размере десятых долей герца). Спектры могут характеризовать абсолютную мощность каждой ритмической составляющей или относительную, т.е. выраженность мощности каждой составляющей (в процентах) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи.

Индивидуальный спектр ЭЭГ в состоянии покоя (по D. Lykken et al., 1974). По оси абсцисс — частота в Гц., по оси ординат — спектральные плотности в логарифмической шкале. На рисунке хорошо видно, что максимальное значение спектральной мощности приходится на частоту альфа-ритма

Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например, корреляционному анализу, при этом вычисляют авто- и кросскорреляционные функции, а такжекогерентность, которая характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях. Когерентность изменяется в диапазоне от +1 (полностью совпадающие формы волны) до 0 (абсолютно различные формы волн). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов.           При помощи вычисления когерентности можно определить характер внутри- и межполушарных отношений показателей ЭЭГ в покое и при разных видах деятельности. В частности, с помощью этого метода можно установить ведущее полушарие для конкретной деятельности испытуемого, наличие устойчивой межполушарной асимметрии и др. Благодаря этому спектрально-корреляционный метод оценки спектральной мощности (плотности) ритмических составляющих ЭЭГ и их когерентности является в настоящее время одним из наиболее распространенных.

Источники генерации ЭЭГ. Парадоксально, но собственно импульсная активностьнейроновне находит отражения в колебаниях электрического потенциала, регистрируемого с поверхности черепа человека. Причина в том, что импульсная активность нейронов не сопоставима с ЭЭГ по временным параметрам. Длительность импульса (потенциала действия) нейрона составляет не более 2 мс. Временные параметры ритмических составляющих ЭЭГ исчисляются десятками и сотнями милисекунд.           Принято считать, что в электрических процессах, регистрируемых с поверхности открытого мозга или скальпа, находит отражениесинаптическаяактивность нейронов. Речь идет о потенциалах, которые возникают в постсинаптической мембране нейрона, принимающего импульс. Возбуждающие постсинаптические потенциалы имеют длительность более 30 мс, а тормозные постсинаптические потенциалы коры могут достигать 70 мс и более. Эти потенциалы (в отличие от потенциала действия нейрона, который возникает по приниципу «все или ничего») имеют градуальный характер и могут суммироваться.           Несколько упрощая картину, можно сказать, что положительные колебания потенциала на поверхности коры связаны либо с возбуждающими постсинаптическими потенциалами в ее глубинных слоях, либо с тормозными постсинаптическими потенциалами в поверхностных слоях. Отрицательные колебания потенциала на поверности коры предположительно отражают противоположное этому соотношение источников электрической активности.           Ритмический характер биоэлектрической активности коры, и в частности альфа-ритма, обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Именно в таламусе находятся главные, но не единственныепейсмекерыили водители ритма. Одностороннее удаление таламуса или его хирургическая изоляция от неокортекса приводит к полному исчезновению альфа-ритма в зонах коры прооперированного полушария. При этом в ритмической активности самого таламуса ничто не меняется. Нейроны неспецифического таламуса обладают свойством авторитмичности. Эти нейроны через соответствующие возбуждающие и тормозные связи способны генерировать и поддерживать ритмическую активность в коре больших полушарий. Большую роль в динамике электрической активности таламуса и коры играетретикулярная формацияствола мозга. Она может оказывать синхронизирующее влияние, т.е. способствующее генерации устойчивого ритмическогопаттерна, и дезинхронизирующее, нарушающее согласованную ритмическую активность(см. Хрестомат. 2.3).

Синаптическая активность нейронов

Функциональное значение ЭЗГ и её составляющих.Существенное значение имеет вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекалальфа-ритм— доминирующий ритм ЭЭГ покоя у человека.           Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н. Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования («считывания») информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработкиафферентныхсигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра, и таким образом регулирующих поток сенсорных импульсов.           В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменениии функциональных состояний организма (Данилова, 1992). Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновой сон или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют стресс-ритм или ритм напряжения. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4-7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тэта-ритм связан скортико-лимбическимвзаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы.           Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейронными сетями, продуцирующими высокочастотную активность ЭЭГ (см. Хрестомат. 2.1;Хрестомат. 2.5).

Магнитоэнцефалографиярегистрация параметров магнитного поля, обусловленных биоэлектрической активностью головного мозга. Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков и специальной камеры, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной электроэнцефалограммы. В частности, радиальные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как ЭЭГ. Это позволяет более точно рассчитывать положение генераторов ЭЭГ-активности, регистрируемой со скальпа.

ЭЭГ-гарнитура — гаджет для музыки и коррекции эмоций / Pult.ru corporate blog / Habr

В этом году произошло знаменательное событие: бельгийский технологический центр Imec, институт научно-промышленных исследований университета Осаки и компания Datwyler представили прототип крайне любопытного устройства. Гаджет в виде шлема снимает ЭЭГ и анализирует полученный сигнал, “понимая”, какая музыка нам нравится. Кроме того, устройство может анализировать когнитивные процессы, измерять эмоциональный фон и самостоятельно генерировать музыку для того, чтобы этот фон улучшить.

Авторитетное интернет-издание phys.org назвала устройство “крупным прорывом”. Мне понравилась идея, заложенная в принцип действия устройства: использовать сравнительный анализ ЭЭГ для определения эмоциональной реакции, в т. ч. на музыкальные произведения. Я решил подробнее узнать о девайсе и принципе его работы.

Первая демонстрация


Прототип гарнитуры был впервые представлен на Международной выставке потребительской электроники (CES 2018) в Лас-Вегасе в январе 2018 года. По отзывам посетителей, имевших возможность протестировать шлем на себе, шайтан-устройство действительно оценивало их музыкальные вкусы. Более того, алгоритм, работающий с устройством, генерировал музыкальные сигналы, поднимающие настроение.

По заявлениям разработчиков, устройство также может определять и фиксировать эмоции в реальном времени, например, в процессе игры или просмотра кино. Отчеты присутствовавших на выставке зафиксировали множество восторгов по поводу новинки и её возможностей. Исследователи охотно рассказывали посетителям о том, как работает это девайс.

Принцип действия


Сам шлем создан для того, что удобно разместить т.н. сухие электроды ЭЭГ, выполненные в виде металлических шипов с тупым концом. Ранее самыми большими проблемами вне клинического использования ЭЭГ считались возможность быстрого сухого размещения электродов и длительного использования устройства. Конструктивные особенности шлема, сухие электроды от Datwyler и емкий аккумулятор помогли с решением этих проблем. Также шлем оснащен 3,5-мм разъемом для наушников и bluetooth для потоковой передачи звука.

С помощью электродов аппарат может точно снимать фронтальные сигналы ЭЭГ, которые дают сведения об эмоциональных реакциях. Затем программное обеспечение обрабатывает сигналы и определяет эмоциональную реакцию, например, на музыку. Алгоритм не только анализирует эмоциональное состояние при воспроизведении музыки, но также фиксирует результаты в личном профиле пользователя. Затем множество сигналов конкретного пользователя обрабатываются ИИ, снабженным функцией самообучения. При запуске режима коррекции алгоритм генерирует музыкальное произведение, исходя из предпочтений пользователя в режиме реального времени.

Кто и чем занимался


Известно, что алгоритмами машинного обучения и искусственным интеллектом системы занимался центр инноваций университета Осаки, где специалистом удалось объединить персонализированную классификацию эмоций, комплексную оценку музыкальных вкусов пользователя и формирования музыкального контента на этой основе. Профессор Масаюки Нумао из Института научно-промышленных исследований (ISIR), Университета Осаки отметил:
«Наш опыт в области машинного обучения и индивидуальной классификации эмоций помог нам создать уникальную систему ЭЭГ, которая связывает музыку с эмоциональными изменениями… Мы объединили распознавание эмоций на основе моделей с методами сочинения музыки в реальном времени».

Imec в свою очередь гордится разработкой шлема, который на данный момент является, пожалуй, наиболее универсальным форм-фактором для ЭЭГ-электродов. В частности, Крис Ван Хоф, старший директор Imec по разработке медицинских решений подчеркивает:
«Значительный опыт Imec в этой области является результатом почти десятилетия работы по созданию схем и компактных систем для носящего мониторинг ЭЭГ».

Ван Хоф также отмечает вклад коллег из Университета Осаки и Datwyler и уточняет, что главной заслугой Imec является универсальность конструкции шлема. По мнению ученого, интерфейс можно использовать как для клинических исследований, так и в качестве ежедневного гаджета, который не требует много времени для установки электродов и способен работать достаточно длительное время.

Datwyler занимались непосредственно сухими электродами. Представитель компании Ронни Врижанс отметил, что разработка прототипа нового устройства совместно с Imec помогла создать сухие электроды с более высокой стабильностью сигнала, что само по себе уже большое достижение

Немного об ЭЭГ и отечественных исследованиях


Для тех, кто не совсем в курсе, ЭЭГ или электроэнцефалограмма — это регистрация биоэлектрической активности головного мозга для исследования его функционального состояния. Зачастую ЭЭГ применяют в диагностических (медицинских) и исследовательских целях. Регистрация электрической активности происходит неинвазивно, с помощью прикрепленных к голове электродов электроэнцефалографа. Сигналы от электродов усиливаются, после чего сигнал обрабатывается АЦП и записывается в цифровой форме.

На ЭЭГ определяется ритмичность электрической активности мозга. В зависимости от состояния и факторов, влияющих на человека, каждый из 10 исследуемых ритмов (α, β, γ, δ, θ, κ, λ, μ, σ, τ) может меняться.

Проведение экспериментов по психоакустике продемонстрировали стойкую взаимосвязь психических явлений с изменениями ЭЭГ. Прослушивание музыки и получение удовольствия от музыкальных произведений не стали исключением.

Так в достаточно емкой статье об экспериментах “ЭЭГ-корреляты реагирования на музыку разных стилей” русские исследователи Надежда Кайгородова, Михаил Яценко, Николай Афанасьев подробно описывают взаимосвязь эмоций, полученных при прослушивании музыки различных стилей с записями электроэнцефалограмм во время прослушивания. Вполне вероятно, что это отечественное исследование в числе прочих легло в основу японско-бельгийской разработки.

Дальнейшее исследование результатов ЭЭГ, записанных при прослушивании музыки, навели исследователей на мысль об объединении электроэнцефалографа и звуковоспроизводящего устройства, которое могло бы быть использовано для коррекции стрессовых состояний.

Методы, по принципу близкие к ЭЭГ-гарнитуре от Imec, были описаны в 2014-м году в работе “Сочетание технологии ЭЭГ-биоуправления с музыкальной терапией для эффективной коррекции стресс-вызванных расстройств” (Федотчев А. И., Сан Чжун О., Семикин Г. И.). Работа продемонстрировала относительную эффективность метода в отношении расстройств, вызванных стрессом, и хорошие показатели похожего устройства во время эмоциональной коррекции.

Итог


Ежегодно появляются всё новые устройства на основе нейроинтерфейсов, в основу которых часто положен принцип ЭЭГ. Как видно, ничего теоретически нового в этом шлеме не предложили. Заслуга его создателей в другом: они впервые реализовали на практике универсальное носимое ЭЭГ устройство с функционалом по коррекции эмоций при помощи музыки. Объединение форм-фактора и функционала, теоретической базы и технологий в очередной раз привело к реализации смелой идеи, которая может легко масштабироваться. Буду признателен за ваши мнения о новинке и том, как ещё можно использовать этот гаджет.

Джинса
В нашем каталоге пока нет гаджетов с нейроинтерфейсами, но много другой электроники способной поднимать настроение высокой верностью воспроизведения звука, например акустические системы, наушники и усилители

ЭЭГ как инструмент реверс-инжиниринга мозга и интерфейс мозг-компьютер / Neuron Hackspace corporate blog / Habr

В научно-исследовательском комплексе психофизиологии факультета психологии МГУ находится, пожалуй, один из самых точных и скоростных энцефалографов в мире. Специально для научных исследований может использоваться одновременно до 258 каналов в пассивном режиме, позволяющих синхронно регистрировать и анализировать электроэнцефалограмму (ЭЭГ) в режиме реального времени.


(подключаем Катю к матрице ЭЭГ 32 канала с активными электродами)

Как «пакмэны жрут несуществующий квадрат», какая часть мозга генерирует иллюзии, какого цвета цифры, как психофизиологи обрабатывают многомерные сигналы и может ли это привести к реверс-инжинирингу мозга.

Под катом поверхностное описание аппарата, немного про обработку сигнала и про те исследования, которые проводят молодые ученые психо- нейрофизиологи и какие вызовы есть для программистов, которые хотят изучать мозг и/или работать в проекте по изучению мозга.


Удобно расположитесь в кресле, откиньтесь на спинку и сделайте глубокий вдох


ЭЭГ-шлем с системой ActiChamp от Brainproducts оснащен активными биосенсорами (до 128 каналов), которые улавливают мельчайшие изменения электрических сигналов от мозга человека с экстремально высокими скоростями дискретизации – до 100 КГц!

256 каналов


256 каналов


Активные, в противоположность пассивным, электроды оснащены встроенными в них микрочипами – предусилителями, которые оцифровывают аналоговый сигнал и передают его с наименьшими искажениями.

Электроды устанавливаются над всеми важными для анализа областями мозга и синхронно передают сигнал на блоки усилителей либо с помощью шлейфа, либо по wi-fi – по 32 канала на блок с пропускной полосой в 1000 Гц и частотой дискретизации до 5000 Гц в противоположность 500 Гц некоторых медицинских ЭЭГ, не говоря о нейрогарнитурах).

Wi-fi модуль

После того, как сигналы поступают на блоки усилителей (уровень шума ≤ 2 μVpp), их путь не оканчивается. Дальше они передаются по двойному оптоволоконному кабелю на USB-адаптер, в который также поступают и внешние сигналы (триггеры) для синхронизации с внешними устройствами, например EyeTracker’ом (о нем в след. раз). USB-адаптер служит коннектором с ПК.


Основная задача всех элементов-посредников в минимизации искажений и задержек в сигнале, мощность которого измеряется лишь десятками микровольт


Дополнительные блоки для регистрации т.н. периферических показателей, которые отражают вегетативные процессы, такие как: кардиоритм, тонус сосудов, дыхание, температура, движения, активность мышц и т.п., всего до 128 каналов дополнительно.

Датчики

Сопротивление кожи, термодатчик, акселерометр, пульсометр оптический


Вот на ком делают измерения, когда нет студентов

Софт и обработка сигнала

Софт для обработки и анализа ЭЭГ обладает широким функционалом с возможностью интегрировать данные МРТ для локализации электрических сигналов учитывая индивидуальную конституцию мозга конкретного человека. Собственно система сама располагает модулем, который называется «томографией низкого разрешения» (LORETA) (*речь идет не о технической реализации – магнитная или позитронно эмиссионная, а о принципе визуализации и картирования мозга).

Одна из основных проблем для точности – это артефакты. Под этим термином понимаются искажения сигнала внешними или внутренними факторами, будь то движения глаз или наводка в 100 Гц от ламп дневного света.

Несмотря на кажущееся совершенство технологии регистрации ЭЭГ, недостатки все же присутствуют. Пожалуй, основной из них — необходимость использования электропроводной пасты или геля для снижения сопротивления между скальпом и электродами. Технология в целом также не является самодостаточной, и тенденция последнего времени сходится к комбинации различных методов. Уже сейчас используются электроды, которые работают в магнитном поле томографа (порядка 10 Тесла).


Пунктир — это внешний стимул. Фагмент ЭЭГ-сигнала (слева), попытки локализовать источник в трехмерном пространстве (посередине) и в проекции на скальп (справа)


Фрагмент записанной ЭЭГ


Вот такими кривульками наш мозг видит мир. Ну а если серьезно, то это ПСС (потенциалы, связанные с событиями), которые отражают чистый (специально записанный и отфильтрованный) отклик групп нейронов на тот или иной стимул. Тут они всем скопом по всем отведениям. Потенциальная и пока (а может и вообще) неразрешимая задача состоит в обратном: восстановить, что же видел/слышал/представлял/трогал человек в этот момент?


Снизу — ПСС, но не всем скопом, а по тому, как они были зарегистрированы в разных отведениях.


Карта подэлектродной локализации активности, посекундно — от картинки к картинке


3d-вид


Фурье-преобразование сигнала, зарегистрированного под разными электродами.


Непрерывное вейвлет-преобразование ЭЭГ. (Первое правило психофизиологов — никому не говорить про вейвлет. Шутка.) Вейвлет нам нужен для того, чтобы посмотреть частотную составляющую ЭЭГ (разные ритмы состоят из разных частот и отражают разные состояния человека) и рассмотреть это все во временной перспективе.

Люди
Внимание

Вячеслав Лебедев, сотрудник и аспирант кафедры психофизиологии МГУ им. М.В. Ломоносова, со-основатель проекта NeuroFuture, психофизиолог:
«Суть моей научной работы — исследование роли внимания в процессах кросс-модальной интеграции.
Расшифровка: Информация, поступающая из внешней среды, как правило, состоит из сигналов разных модальностей (слуховой, зрительной и т.д.). Обработка этой мультисенсорной информации требует синхронной совместной работы структур мозга, задействованных в обрабтке сигналов определенной модальности. Современные исследования на уровне отдельных нейронов показывают существование нейронов в различных областях и уровнях головного мозга, функцией которых является обработка именно мультисенсорной информации. Но открытым остается вопрос системного объединения этих разноуровневых структур в процессе обработки потока мультисенсорной информации, а также о роли произвольного (инициируемого самим человеком) и непроизвольного (вызванного внешними событиями) внимания в этом процессе. ЭЭГ — один из самых информативных методов исследования этого процесса в динамике.»


(Найдите собачку)

Иллюзии

Илья Захаров, аспирант кафедры психофизиологии МГУ им. М.В. Ломоносова, со-основатель проекта NeuroFuture, психофизиолог:
«Психофизиология пытается связать идеальное (психологию и „душу“, если она есть) и материальное (то, что можно исследовать естественно-научными методами). Получается с переменным успехом, но это интересно


Есть такие штуки — иллюзии. Что же происходит в мозге, когда мы их видим? Существует ли универсальный паттерн мозговой активности, одинаковый для всех людей, характерный только для тех моментов, когда мы видим зрительную иллюзию? А что делать, если мы смотрим на любимого человека и у нас вдруг возникает этот паттерн?


Посредством записи различных паттернов на ЭЭГ можно объективно зарегистрировать у человека восприятие нового для него типа иллюзии (например, нового варианта иллюзии субъективного контура). Для этого используется метод связанных с событием потенциалов: выделение из общего сигнала ЭЭГ того компонента, который появляется при предъявлении иллюзии.


Черный график — просто стимул, красный — иллюзия, пунктир — момент предъявления стимула
Справа — ответ мозга на предъявление классического типа иллюзий по сравнению со стимулом, когда мозгу ничего не надо достраивать
Слева — ответ на предъявление нового типа, опять же, по сравнению с тем, когда не надо достраивать

Мы видим, что в одном и том же месте (компонент N170) амплитуда сигнала в ответ на иллюзию больше. Этот ответ — объективная мера нашего восприятия иллюзии. Если мы видим и прямые, и волнистые иллюзорные контуры на одинаковом психофизиологическом уровне, вероятно, в обоих случаях мы используем одинаковые механизмы формирования образа.»

Программирование и обработка многомерных сигналов

Костя Славнов, программист
— Какой внутренний мотив сподвиг математика пойти работать над нейросайнс-проектом?
— Интерес. Мне всегда было интересно узнать, как работает мозг человека. К тому моменту я уже достаточно много знал о возможностях метода анализа данных применительно к мозгу. Все они основываются на обработке многомерных сигналов. А у меня была именно такая тематика курсовой работы.
Как всегда большую роль сыграла случайность. я прочитал статью об Илье и решил написать ему про себя: что я — математик-программист, интересна эта тема. А ребятам как раз не хватало человека с моими навыками. И я быстро включился в работу.
Синестезия

Мария Степаненко, студентка кафедры психофизиологии МГУ им. М.В. Ломоносова, психофизиолог, исследователь синестезии

«Синестезия — это, грубо говоря, связь различных модальностей. Проявляется она в виде переживания ощущений в одной модальности во время предъявления стимулов в другой.


Можете ли вы быстро найти „цветной“ треугольник?

Вообще, синестезия — безумно интересное, но и очень малоизученное явление. Существует невероятное множество различных ее видов: некоторые синестеты „видят“ цвета определенных букв/дней недели/месяцев, кто-то из них „чувствует“ запахи при произнесении определенных слов, кто-то „ощущает“ текстуру голоса/запаха, „чувствует“ вкус имен, „слышит“ движение и так далее. Более того, у большинства синестетов проявляется связь не двух, но множества модальностей, и, таким образом, проявляются различные виды синестезии.

Существует достаточно много гипотез относительно того, каким образом возникают синестетические ощущения. В моем исследовании ставится вопрос о том, на каком уровне происходит данный процесс: только ли это перцептивные ощущения, обработка которых происходит на низших уровнях, или же это высокоуровневый, когнитивный процесс.
Акцент ставится на аудиовизуальной синестезии, а именно — на связи тонов и тембров с различными цветами. В качестве испытуемых выступают как синестеты, так и люди, не обладающие синестетическими ощущениями. В ходе эксперимента (а именно — в момент предъявления звуковых стимулов) производится запись ЭЭГ, и впоследствии — анализ данных путем сравнения ПСС, зарегистрированных у синестетов и несинестетов.

К слову об испытуемых: если вас интересует данная тема, или вдруг у вас есть знакомые синестеты, или, внезапно, вы сами обнаружили у себя наличие подходящего для данного исследования вида аудиовизуальной синестезии — смело обращайтесь ко мне, я буду рада видеть вас в числе своих испытуемых!»

Выступление на TED нейроученого


Тест на синестезию «цвет цифры» (Слева — то, как видит картинку обычный человек; справа — видение синестета: треугольник из двоек сразу выделяется другим цветом, вследствие чего синестет без труда и довольно быстро может указать на все двойки на картинке)

Обработка данных

Андрей Учаев, студент кафедры психофизиологии МГУ им. М.В. Ломоносова, психофизиолог:
«Моя позиция по получению экспериментальных данных была хорошо отражена в словах героя одной игры: „… мы просто бросаем наукой в стенку и смотрим, что прилипнет..“ Это говорит о том, что в исследовании я стараюсь получить максимум данных, которые вообще можно выжать из электрофизиологического сигнала.


Сейчас я зациклен скорее на следующем: на отработке различных методов обработки сигнала независимо от поставленной задачи. Помощь программистов тут огромна. Встречаются различные проблемы: бывает, что не все методы обработки представлены в одной программе, или же нет доступа ко всему функционалу — приходится изворачиваться, и не всегда это удается.


И есть еще одна немаловажная проблема — экономия времени. Довольно часто бывает необходимо обработать данные десяти человек, используя 10-15 различных преобразований. Тут бы не помешало написание скриптов, которые позволят автоматизировать задачу. Нажал на кнопку и пошел домой — а утром все уже обработано.»

Заключение

«Нейронаукам нужны программисты». Так говорят и русские коллеги, а зарубежные нейроученые даже обращаются к хакерам. Потому что очень скоро нам, не дай бог возможно, потребуются не только инструменты обеспечения приватности сообщений от технического перехвата, но и мыслей.

Как писал Азимов, что «для человечества осталось две загадки — глубины космоса и тайна мозга», радует, что Хабр очень приветствует космонавтику, надеюсь, что то же самое произойдет и с изучением мозга.

Электроэнцефалография. Технические нюансы — Центр эпилептологии и неврологии им. А.А.Казаряна

Электроэнцефалография (ЭЭГ) — метод исследования головного мозга, основанный на регистрации его биоэлектрических потенциалов. Конкретно, в каждом канале измеряется разность потенциалов между активным и референциальным электродами – т.е. между этими электродами течет слабый переменный электрический ток, производимый пациентом. Поскольку ток слабый, между электродами должно быть минимальное сопротивление! (импеданс).

С помощью ЭЭГ можно объективно исследовать функциональное состояние головного мозга и выявить степень и локализацию его поражения. Метод наиболее информативен при диагностике эпилепсии. Данные ЭЭГ помогают дифференцировать различные формы припадков, установить локализацию эпилептического очага, а так же осуществлять контроль эффективности лекарственной терапии.

Следует помнить, что ЭЭГ регистрирует суммарную электрическую активность с относительно больших участков поверхности головы. При этом, помимо активности коры головного мозга, могут быть зарегистрированы миографическая активность мышц скальпа и жевательных мышц, мышц глазных яблок и век, реограмма и ЭКГ-артефакт при нахождении ЭЭГ-электрода над кровеносными сосудами.

Итак, для регистрации ЭЭГ нужно некоторое количество электродов на голове, установленных в определенных точках, а также референциальный электрод(ы) и электрод заземления.

Референтные электроды, классически, располагаются на мочках ушей, обозначаются Ref (R), но могут быть установлены и в другом месте, например на сосцевидных отростках за ушами, по средней линии, между Fz и Cz электродами (электроды, расположенные по средней линии, обозначаются индексом — «z», от «zero», т. е. Нулевой). Электроды, которые расположенные в левом полушарии, принято обозначать нечетными цифрами, а в правом полушарии — четными. Обязательно наличие электрода заземления, который может располагаться в любом месте на голове (чаще всего устанавливают между Fp1 и Fp2 электродами на лбу, в точке Fpz).

Полная стандартная схема 10-20 предусматривает установку 21 электрода (считая 1 электрод заземления и 1 референт).

Места отведений электрической активности мозга имеют буквенные обозначения, в соответствии с областями, над которыми располагаются электроды:

                                                                                                                                                         

          Затылочное отведение — О (occipitalis)

          Теменное — P (parietalis)

          Центральное — C (centralis)

          Лобное — F (frontalis)

          Височное — T (temporalis)

 

 

Международная схема расположения электродов.

Международная схема 10-20%, или просто схема 10-20 была разработана Jasper H. в 1958 г, для стандартизации терминологии и описания локализации скальповых электродов, чтобы ЭЭГ записи могли быть сравнимыми, вне зависимости от лаборатории и врача, анализировавшего исследование. В настоящее время является международным стандартом установки электродов. Используется при наклейке коллодиевых электродов, а также в ЭЭГ шапочках, которые появились гораздо позднее.

Данная схема предусматривает измерение расстояния от костных ориентиров черепа, с последующим расчетом интервалов между электродами в процентах, для определения мест установки электродов. Принцип следующий:

1) Измеряется расстояние между точками Nasion (переносица) и Inion (выступ затылочного бугра).
    На 10% от полученного расстояния, выше затылочного бугра, располагается точка Oz и линия затылочных электродов (О1, О2). Кпереди от этой линии, на расстоянии 20% находится точка Pz и линия теменных электродов (Р3, Р4), еще через 20% — точка Cz и линия центральных электродов (С3, С4), и еще через 20% — точка Fz и линия лобных электродов (F3, F4). Лобные полюсные электроды (Fp1 и Fp2) располагаются на линии, находящейся в 10% выше точки Nasion, и в 20% от линии лобных электродов. В точке пересечения этой линии с продольной, находится точка Fpz.

2) Второе основное расстояние измеряется между околоушными точками (за ориентир принимается углубление сразу над козелком), по линии, которая проходит через середину первого расстояния. Оно также делится на отрезки в процентах: в 10% кверху от слуховых проходов, с каждой стороны, располагаются височные электроды (Т3 и Т4), в 20% выше от височных электродов находятся вышеупомянутые центральные электроды (С3, С4).

3) Третье расстояние измеряется как окружность головы, однако лента прокладывается строго через уже найденные точки Fpz, T3, Oz и T4 (по окружности). За 100% принимается половина полученного расстояния и, исходя из этого, высчитываются по 10% влево и вправо от Fpz для определения полюсных лобных электродов (Fp1 и Fp2, соответственно) и по 10% от Oz, для определения затылочных электродов (О1 и О2). Также на этой линии лежат:
—   нижнелобные электроды (F7 и F8), на расстоянии 20% от Fp1 (кзади) и Т3 (кпереди) и аналогичным образом с другой стороны.
—   задневисочные электроды (Т5 и Т6), на расстоянии 20% от T3 (кзади) и O1 (кпереди) и аналогично с другой стороны.

Как уже было сказано, по средней линии устанавливаются сагиттальные электроды — лобные (Fz), центральные (Cz), теменные (Pz). Точки Fpz и Oz не используются для установки активных электродов в системе 10-20.

По величине отрезков в 10 и 20% эта схема и получила свое название.

  

Разметка головы для установки коллодиевых электродов:

1. Прокладывая измерительную ленту от Nasion до Inion строго по средней линии, измеряем первое расстояние, и на его половине, справа и слева от ленты, ставим промежуточные метки.

2. Измеряем расстояние между околоушными точками, прокладывая край ленты через вышеказанные промежуточные метки.
На середине этого расстояния будет подтвержденная точка Cz. Не отпуская ленту, можно отметить точки Т3, Т4, С3 и С4,

Пример: Получили 35 см. 10% от 35 = 3,5 см.
     От каждой околушной точки, по этой же линии, отмеряем вверх по 3,5 см справа и слева — находим точки Т3  и Т4.
Делим расстояние от Т3  до Cz  пополам, находим С3
Делим расстояние от Т4  до Cz пополам, находим С4

3. Снова прокладываем ленту между точками Nasion и Inion, но в этот раз прокладывая край ленты через уже подтвержденную
точку Cz.

Пример: 40 см указанное расстояние. 10% от 40 = 4 см.  Значит, от Nasion и Inion отмеряем по 4 см вверх по средней линии и отмечаем условные точки Fpz и Oz.
Делим пополам расстояние от точки Cz и точкой Oz, получаем точку Pz. Аналогично, делим пополам расстояние от точки Cz до точки Fpz и находим точку Fz.  

4.   Как было сказано выше, измеряем окружность головы строго через уже найденные точки Fpz, T3, Oz и T4 (по окружности). За 100% принимается половина полученного расстояния. Исходя из этого, высчитываются по 10% влево и вправо от Fpz (по этой окружности) для определения полюсных лобных электродов (Fp1 и Fp2, соответственно) и по 10% от Oz, для определения затылочных электродов (О1 и О2).

Пример: окружность головы 60 см — это 200%. Половина от этого = 30 см.  10% от 30 = 3 см.

5. Находим F7 и F8; Т5 и Т6.

Расстояние от Fр1 до Т3 делим пополам, находим F7
Расстояние от Fр2 до Т4 делим пополам, находим F8
   и
Расстояние от Т3 до О1 делим пополам, находим Т5
Расстояние от Т4 до О2делим пополам, находим Т6

Проверьте себя: вышеперечисленные точки должны лежать на измеренной вами окружности головы.

6. Находим F3 и F4; P3 и P4.

Если дугообразно проложить измерительную ленту через точки Fp1-C3-O1, получится «параллель» (см. рис.1), которая пересекается с «меридианом», идущим через точки F7-Fz-F8 (см. рис. 2) в точке F3.
Аналогично, «параллель» Fp2-C4-O2 пересекается с этим же «мередианом» в точке F4.

 

 

 

 

 

 

                      Рис. 1                                      Рис. 2                                      Рис. 3

Таким же образом, проложив «мередиан» через точки Т5-Pz-T6 (см. рис. 3) можно вычислить точки P3 и Р4.

Другими словами, точка F3 находится на середине расстояния между точками Fp1-С3 и Fz-F7.
Аналогично, точка F4 находится на середине расстояния между точками Fp2-С4 и Fz-F8.
То же самое с электродами Р3 и Р4.

 

В практике, помимо электродов, установленных по системе 10-20, используются дополнительные электроды, для определения местонаходения которых используется тот же принцип. Речь идет об электродах скуловой дуги (F9, F10, T9, T10, P9 и P10). Как определить их местонахождение? 

Вспомните расстояние, измереное от околоушных точек через Cz. Каждый из перечисленных электродов находится на 10% ниже от соответсвующих электродов, лежащих на окружности головы:
—   F9 и F10 на 10% ниже электродов F7 и F8, соответственно. То есть, лежат на скуловой кости.
—   T9 и Т10 на 10% ниже электродов Т3 и Т4, соответственно. Фактически, лежат на околоушных точках.
—   Р9 и Р10 на 10% ниже электродов Т5 и Т6, соответственно. Лежат на сосцевидных отростках черепа (mastoideus).

Использование этих электродов может помочь локализовать интериктальную эпилептиформную активность и зону начала приступа по ЭЭГ. В частности, передние скуловые электроды, по мнению некоторых авторов, являются неинвазивными аналогами сфеноидальных электродов.

 

Монтажи.

Записанные ЭЭГ данные можно представить по-разному. Для этого существуют различные монтажные схемы.

Чаще всего для наблюдения за записью используются референциальный монтаж – в таком виде усилитель воспринимает данные.

Все другие монтажи являются реконструкцией, полученной в результате математических вычислений разности потенциалов на основе данных референциального монтажа.

Особенности монтажных схем (с точки зрения техника):

—       в референциальном монтаже удобно контролировать качество наложения электродов, судя по помехам в том или ином отведении.

—       в биполярном монтаже (продольная цепочка) хорошо видны т.н. «залитые электроды» — т.е. электроды, между которыми образовалась дорожка из электропроводного геля, следовательно, они стали единым электродом, внутри которого нет разности потенциалов, как нет разницы потенциалов между разными концами гвоздя. На ЭЭГ, в таком случае, в отведении, состоящем из пары «залитых» электродов (например F3-C3) регистрируется изолиния.

—       поперечный монтаж. По сути – тот же биполярный монтаж, только цепочки отведений идут в поперечном направлении. Аналогично, в залитой паре электродов (например F7-F3) будет регистрироваться изолиния. Особенность в том, что если у вас залиты F7-F3, то в биполярном (предыдущем) монтаже все будет нормально! (но ЭЭГ данные при этом некорректны).

 

Подготовили: ЭЭГ-ассистент Козлова М.А. и зав. лабораторией видео-ЭЭГ мониторинга Троицкий А.А.

Leave a Reply

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *