Электрокардиография что это: Электрокардиография — это… Что такое Электрокардиография? – что это такое, описание кардиограммы сердца, показания, подготовка к диагностике

Содержание

Электрокардиография — это… Что такое Электрокардиография?

Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет, без патологии.

Элѐктрокардиогра́фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) — графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Происхождение волны U и других необъяснимых феноменов электрокардиограммы с учётом потенциала течения электролита.

Классическая модель генерации живой клеткой электрического напряжения, созданная Ходжкином и Хаксли, убедительно показала, что в процессе возбуждения клетка генерирует электрический потенциал (ЭП), вследствие движения катионов сквозь клеточную мембрану. Тем не менее, глубоко разработанная трансмембранная теория возникновения электрического потенциала, не во всём находит подтверждение в практике электрокардиографии и это побуждает (учитывая высказывание Гейзенберга о том, что любой выявленный парадокс непременно отрицает какое-то устоявшееся мнение, и новые знания начинаются с попыток объяснить и «закрыть» парадокс), к поиску «новых знаний». В данном случае парадокс преодолён не отрицанием, а существенным добавлением к доказанной общепринятой теории.

Действительно, в графике время — напряжение, каким, по сути, является электрокардиограмма (ЭКГ), отображается электрическая активность миокарда, вследствие трансмембранного движения катионов, однако не всё в графике ЭКГ возможно объяснить потенциалом действия. Манифестирующим несоответствием с теорией является непонятность происхождения массажных волн и волны U. Так как электрический вектор загадочной волны полностью совпадает с интегральным вектором кровенаполнения и время её возникновения с наполнением коронарного русла (под давлением в аорте), естественно предположить участие потенциала течения электролита (ПТ) в генезе волны U. Генерация ПТ легко демонстрируется покачиванием колонки обильно увлажнённого песка). Гидродинамический генез волны U доказан имитацией кровотока в коронарных артериях. Продавливая толчками, физиологический раствор сквозь канюли, вставленные в устья коронарных артерий забитой свиньи, с вколотых в сердце электродов я снимал ЭП соответствующий волне U. Опыты проводил неоднократно. При наличии отчетливо выраженной волны U на исходно записанной ЭКГ свиньи, наибольшая величина ЭП, наблюдается в условиях соблюдения соосности расположения электродов вектору кровенаполнения (интегральный вектор кровенаполнения от основания сердца к верхушке Синельников). Так как генерация потенциала волны U доказана пассивным наполнением миокарда кровью в фазу диастолы, возникает вопрос, а как же на ЭКГ, в таком случае, проявляется потенциал интенсивного, систолического выдавливания крови из миокарда? Затрагивается проблема происхождения волны Т, изменения рисунка которой имеет важнейшее диагностическое значение. Пренебрегая фактами совпадения времени возникновения и формы волны Т с кривой внутрижелудочкового давления, игнорируя конкордантность комплекса qRS и волны Т (процессы деполяризации и реполяризации противоположно направленные) и не принимая во внимание несоответствие площади волны реполяризации Т площади деполяризации qRS, волну Т называют «зубцом реполяризации». Парадокс устраним, если учитывать одновремённую генерацию большего по величине и направленного противоположно потенциалу действия гидродинамического потенциала. В геофизике этот потенциал давно известен как потенциал фильтрации

Электрокардиограмма, отведение V3 Индукция потенциала течения электролита Моделирование волны U Отсутствие изменений конечной части желудочкового комплекса при некоронарогенном некрозе миокарда

В процессе искусственного массажа сердца неотключенный электрокардиограф регистрирует напряжение, в виде так называемых массажных волн (МВ), амплитуда которых используется как маркер адекватности проводимого массажа. Поскольку в мертвом сердце отсутствует трансмембранный перенос катионов, МВ — это чистый, без интерференции с потенциалом действия ПТ. Неоднократно проводил искусственные массажи сердца, в том числе открытые массажи сердец животных, и убедился, что амплитуда МВ прямо пропорциональна амплитуде волны Т на прижизненно записанной ЭКГ. В случаях так называемой плоской ЭКГ, когда волна Т практически отсутствует во всех отведениях, даже самый энэргозатратный массаж оказывается «неадекватным». Измерения коронарного синуса подтвердили пропорциональность его диаметра амплитуде волны Т, это ещё один убедительный аргумент доказывающий гидродинамическое происхождение потенциала зубца Т. Таким образом, волна Т, в основном, отражает кровоток в миокарде, в результате «самомассажа» сердца во время систолы. Не смотря на то, что фиброзная ткань не генерирует электрическое напряжение, над проекцией рубца, после перенесенного трансмурального инфаркта миокарда со временем вновь регистрируется ЭП в виде «волны Т». Чтобы исключить возможность объяснения его происхождения над рубцовой зоной гипертрофией миокарда противоположной стенки, создал некоронарогенные инфаркты миокарда кролику (обеспечив анестезию). У крупных животных инфаркт миокарда вызывают высокой перевязкой коронарной артерии, однако, учитывая размеры сердца кролика, пришлось уменьшить количество кардиомиоцитов участвующих в возбуждении, инъекцией в переднюю и заднюю стенку миокарда раствора хлористого кальция. Таким образом, создав некоронарогенный некроз противоположных участков сердечной мышцы, до некоторой степени устранил интерференцию синхронно протекающих процессов реполяризации и ПТ. Опыт подтвердил, что «волна реполяризации» Т не связана с предыдущей деполяризацией (амплитуда комплекса qRS снизилась, а волна Т не изменилась). Находкой оказалось отсутствие девиации сегмента SТ! рис 4. Стало понятно, что известную девиацию изолинии в фазу систолы вызывает асимметрия электрического потенциала течения при локальном нарушении кровотока. Некоронарогенный инфаркт, как показывает опыт, протекает без патагномоничного острой фазе инфаркта миокарда волны Парди, поскольку нет асимметрии ПТ. Это и есть ключ к различению коронарогенного инфаркта миокарда от некоронарогенного, позволяющий дифференцированный подход в лечении инфарктов миокарда. Клиника представляет ещё несколько феноменов, необъяснимых, если находиться на позиции только традиционного взгляда о происхождении ЕП, разрешить вопрос возможно только с учётом роли ПТ. Например: восстановление полярности волны Т над рубцовыми изменениями происходит за счёт реваскуляризации этой области. Годами наблюдающаяся у некоторых пациентов значительное снижение амплитуды волны Т во всех отведениях, (реполяризация есть, а реполяризация отсутствует?) происходит из-за иного соотношения количеств крови, дренируемой по сосудам Thebezius и в коронарный синус. Это доказывается прямой зависимостью амплитуды волны Т от диаметра коронарного синуса. Объяснимо укорочение электрической систолы под воздействием сердечных гликозидов (улучшение инотропной функции). Снижение амплитуды волны Т в одном из отведений указывает на зону, где снижена инотропная функция (чаще всего в результате снижение питания этого участка). Дисперсия интервала QT, альтернация волны Т (сюда можно отнести симптом Хегглина) возникают по причине отсутствия стабильности систолической функции миокарда.

История

В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

Опыты продолжил Виллем Эйнтховен, сконструировавший прибор (струнный гальванометр), позволявший регистрировать истинную ЭКГ. Он же придумал современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. В 1924 году ему присудили Нобелевскую премию по медицине.

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

  • Определение частоты (см. также пульс) и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).
  • Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).
  • Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.
  • Выявление нарушений внутрисердечной проводимости (различные блокады).
  • Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.
  • Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).
  • Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.
  • Позволяет удалённо диагностировать острую сердечную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.
  • Может применяться в исследованиях когнитивных процессов, самостоятельно или в сочетании с другими методами [1]

Прибор

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные самописцы, теперь, как правило, электрокардиограмма записывается на термобумаге. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере. Скорость движения бумаги составляет обычно 50 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 25 мм/с или 100 мм/с. В начале каждой записи регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 или, реже, 20 мм/мВ. Медицинские приборы имеют определенные метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца[2].

Электроды

Для измерения разности потенциалов на различные участки тела накладываются электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости, на участки кожи в местах контакта наносят токопроводящий гель. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5-1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50-60 Гц нивелирует сетевые наводки. Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Зубцы на ЭКГ Соответствие участков ЭКГ с соответствующей фазой работы сердца

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает процесс охвата возбуждением миокарда предсердий, комплекс QRS — систолу желудочков, сегмент ST и зубец T отражают процессы реполяризации миокарда желудочков. Процесс реполяризации (Repolarization) — фаза, во время которой восстанавливается исходный потенциал покоя мембраны клетки после прохождения через нее потенциала действия. Во время прохождения импульса происходит временное изменение молекулярной структуры мембраны, в результате которого ионы могут свободно проходить через нее. Во время реполяризации ионы диффундируют в обратном направлении для восстановления прежнего электрического заряда мембраны, после чего клетка бывает готова к дальнейшей электрической активности.

Отведения

Каждая из измеряемых разниц потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I — правая рука — левая рука, II — правая рука — левая нога, III — левая рука — левая нога. С электрода на правой ноге показания не регистрируются, он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов. Заметим, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть сигнал в каждом из этих отведений можно найти, зная сигналы только в каких-либо двух отведениях.

При однополюсном отведении регистрирующий электрод определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведён) и гипотетическим электрическим нулём. Однополюсные грудные отведения обозначаются буквой V.

Схема установки электродов V1—V6
Отведения Расположение регистрирующего электрода
V1 В 4-м межреберье у правого края грудины
V2 В 4-м межреберье у левого края грудины
V3 На середине расстояния между V2 и V4
V4 В 5-м межреберье по срединно-ключичной линии
V5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, так как они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1-2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в 1954 г. J.Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются
  • Отведения по Небу — Гуревичу. Предложены в 1938 г. немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям — задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркт миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Электрическая ось сердца — проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная — с углом 0°…30°). Отклонение от нормы может означать как наличие каких либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо — соответственно левограммой или правограммой.

Другие методы

Внутрипищеводная электрокардиография

Активный электрод вводится в просвет пищевода. Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения. Важен при диагностике некоторых видов блокад сердца.

Векторкардиография

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование

На грудную клетку пациента закрепляются электроды (обычно матрица 6х6), сигналы от которых обрабатываются компьютером. Используется в частности, как один из методов определения объёма повреждения миокарда при остром инфаркте миокарда. К текущему моменту расценивается как устаревший.

Пробы с нагрузкой

Велоэргометрия используется для диагностики ИБС.

Холтеровское мониторирование

Синоним — суточное мониторирование ЭКГ по Холтеру. На теле пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от одного, двух, трёх или более отведений в течение суток или более. Дополнительно регистратор может иметь функции мониторирования артериального давления (СМАД), двигательной и дыхательной активности пациента[источник не указан 335 дней]. Одновременная регистрация нескольких параметров является перспективной в диагностике заболеваний сердечно-сосудистой системы.

Стоит упомянуть о семисуточном мониторировании ЭКГ по Холтеру, которое даёт исчерпывающую информацию о электрической деятельности сердца.

Результаты записи передаются в компьютер и обрабатываются врачом при помощи специального программного обеспечения.

Гастрокардиомониторирование

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке, для чего используется рН-зонд, введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Электрокардиография высокого разрешения

Метод регистрации ЭКГ и её высокочастотных, низкоамплитудных потенциалов, с амплитудой порядка 1 — 10 мкВ и с применением многоразрядных АЦП (16 — 24 бита).

Отражение в культуре

Изображение зубцов ЭКГ настолько распространилось, что их очень часто можно видеть на логотипах компаний или по телевидению, где они часто означают приближение смерти или экстремальные ситуации.

Литература

  • Зудбинов Ю.И. Азбука ЭКГ. — Издание 3. — Ростов-на-Дону: «Феникс», 2003. — 160 с. — 5000 экз. — ISBN 5-222-02964-6
  • Мясников А. Л. Экспериментальные некрозы миокарда.. — М. Медицина., 1963.
  • Синельников Р. Д Атлас анатомии человека. — М. Медицина., 1979. — Т. 2.
  • Brawnwald L. D Heart disease. — 1992. — С. 122.
  • Спасский К. В. Про роль потенціалу фільтрації в походженні массажних хвиль та хвилі U, електрокардіограми, його вплив напараметри кінцевої частини шлуночкового комплексу.. — Наукові записки Острозької академії, 1998. — Т. 1.
  • Спасский К. В Роль потенциала фильтрации в происхождении волн реполяризации и массажных волн.. — Минск: Медико-социальная экспертиза и реабилитация. Выпуск №3. часть №2., 2001.
  • Спасский К. В Роль потенціалу плину у формуванні хвиль кінцевої частини шлуночкового комплексу ЄКГ. — Минск: Вісник університету „Україна”., 2007.

Примечания

Ссылки

См. также

Электрокардиография — Википедия. Что такое Электрокардиография

Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет

Электрокардиогра́фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ).

История

В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

Опыты продолжил Виллем Эйнтховен, сконструировавший прибор (струнный гальванометр), позволявший регистрировать истинную ЭКГ. Он же ввел современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. В 1924 году ему присудили Нобелевскую премию по медицине[1].

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

Прибор

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные самописцы, теперь, как правило, электрокардиограмма записывается на термобумаге. Скорость движения бумаги составляет обычно 50 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 25 мм/с или 100 мм/с. В начале каждой записи регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 или, реже, 20 мм/мВ. Медицинские приборы имеют определённые метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца[2]. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере.

Электроды

Для измерения разности потенциалов на различные участки тела накладываются электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости на участки кожи в местах контакта наносят токопроводящий гель. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5—1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50—60 Гц нивелирует сетевые наводки. Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Соответствие участков ЭКГ с соответствующей фазой работы сердца.

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает процесс деполяризации миокарда предсердий, комплекс QRS — деполяризации желудочков, сегмент ST и зубец T отражают процессы реполяризации миокарда желудочков. Мнения исследователей относительно природы возникновения зубца U различаются. Одни считают, что он обусловлен реполяризацией папиллярных мышц или волокон Пуркинье; другие — что связан с вхождением ионов калия в клетки миокарда во время диастолы. По мнению Горшкова-Кантакузена В. А., зубец U возникает вследствие уноса кровью части заряда по коронарным артериям. Уменьшение или увеличение содержания калия и магния влияют на распространение заряда и его перенос кровью[3].

Процесс реполяризации (Repolarization) — фаза, во время которой восстанавливается исходный потенциал покоя мембраны клетки после прохождения через неё потенциала действия. Во время прохождения импульса происходит временное изменение молекулярной структуры мембраны, в результате которого ионы могут свободно проходить через неё. Во время реполяризации ионы диффундируют в обратном направлении для восстановления прежнего электрического заряда мембраны, после чего клетка оказывается готова к дальнейшей электрической активности.

Отведения

Каждая из измеряемых разностей потенциалов в электрокардиографии называется отведением.

Отведения I, II и III накладываются на конечности: I — правая рука (-, красный электрод) — левая рука (+, желтый электрод), II — правая рука (-) — левая нога (+, зеленый электрод), III — левая рука (-) — левая нога (+). С электрода на правой ноге показания не регистрируются, его потенциал близок к условному нулю, и он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов (система Вильсона) или относительно усредненного потенциала двух других электродов (система Гольдбергера, дает амплитуду примерно на 50 % большие). Следует заметить, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть, зная сигналы только в каких-либо двух отведениях, можно, путём сложения/вычитания, найти сигналы в остальных четырех отведениях.

При так называемом однополюсном отведении регистрирующий (или активный) электрод определяет разность потенциалов между точкой электрического поля, к которой он подведён, и условным электрическим нулём (например, по системе Вильсона).

Однополюсные грудные отведения обозначаются буквой V.

Схема установки электродов V1—V6.
Отведения Расположение регистрирующего электрода
V1 В 4-м межреберье у правого края грудины
V2 В 4-м межреберье у левого края грудины
V3 На середине расстояния между V2 и V4
V4 В 5-м межреберье по срединно-ключичной линии
V5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, хотя они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1—2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в 1954 году J. Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются.
  • Отведения по Небу — Гуревичу. Предложены в 1938 году немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям — задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркта миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Линейка для ЭКГ с номограммами, облегчающими определение ЭОС

Электрическая ось сердца — проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная — с углом 0°…30°). Отклонение от нормы может означать как наличие каких-либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо — соответственно левограммой или правограммой.

Другие методы

Внутрипищеводная электрокардиография

Активный электрод вводится в просвет пищевода. Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения. Важен при диагностике некоторых видов блокад сердца.

Векторкардиография

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование

На грудную клетку пациента закрепляются электроды (обычно матрица 6х6), сигналы от которых обрабатываются компьютером. Используется в частности, как один из методов определения объёма повреждения миокарда при остром инфаркте миокарда. К текущему моменту расценивается как устаревший.

Пробы с нагрузкой

Велоэргометрия используется для диагностики ИБС.

Холтеровское мониторирование

Система холтеровского мониторирования

Синоним — суточное мониторирование ЭКГ по Холтеру.

На теле пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от одного, двух, трёх или более отведений в течение суток или более. Дополнительно регистратор может иметь функции мониторирования артериального давления (СМАД). Одновременная регистрация нескольких параметров является перспективной в диагностике заболеваний сердечно-сосудистой системы.

Стоит упомянуть о семисуточном мониторировании ЭКГ по Холтеру, которое даёт исчерпывающую информацию об электрической деятельности сердца.

Результаты записи передаются в компьютер и обрабатываются врачом при помощи специального программного обеспечения.

Гастрокардиомониторирование

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке, для чего используется рН-зонд, введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Электрокардиография высокого разрешения

Метод регистрации ЭКГ и её высокочастотных, низкоамплитудных потенциалов, с амплитудой порядка 1—10 мкВ и с применением многоразрядных АЦП (16—24 бита).

См. также

Примечания

Литература

  • Зудбинов Ю.И. Азбука ЭКГ. — Издание 3. — Ростов-на-Дону: «Феникс», 2003. — 160 с. — 5000 экз. — ISBN 5-222-02964-6.
  • Мясников А. Л. Экспериментальные некрозы миокарда. — М. Медицина, 1963.
  • Синельников Р. Д. Атлас анатомии человека. — М. Медицина, 1979. — Т. 2.
  • Brawnwald L. D. Heart disease. — 1992. — С. 122.
  • Спасский К. В. Про роль потенціалу фільтрації в походженні массажних хвиль та хвилі U, електрокардіограми, його вплив напараметри кінцевої частини шлуночкового комплексу. — Наукові записки Острозької академії, 1998. — Т. 1.
  • Спасский К. В. Роль потенциала фильтрации в происхождении волн реполяризации и массажных волн. — Минск: Медико-социальная экспертиза и реабилитация. Выпуск №3. часть №2, 2001.
  • Спасский К. В. Роль потенціалу плину у формуванні хвиль кінцевої частини шлуночкового комплексу ЄКГ. — Минск: Вісник університету „Україна”, 2007.

Ссылки

ЭЛЕКТРОКАРДИОГРАФИЯ (справочник фельдшера) | Энциклопедия KM.RU

Электрокардиография (ЭКГ).

Методика регистрации и ориентировочной оценки ЭКГ

Электрокардиограмма — запись электрических колебаний (изменения разности потенциалов), возникающих в результате работы сердца. По ЭКГ можно косвенно судить об анатомическом расположении сердца и о состоянии миокарда (возбудимости, проводимости, гипертрофии, очагах некроза).

Устройство электрокардиографа. Для записи ЭКГ машины скорой помощи оснащаются одноканальными электрокардиографами с сетевым (220 в) или автономным аккумуляторным питанием. Электрокардиограф состоит из датчиков-электродов, усилителя и записывающего устройства. Запись производится на специальную бумажную ленту, напоминающую миллиметровку. Электроды прикрепляются на конечности больного и на грудную клетку. На одноканальном кардиографе поочередно включаются разные пары электродов (или группы), таким образом регистрируются различные отведения. По ним судят о локализации процесса (например, зоне некроза) в миокарде.

Во время сокращений сердца на ленте записываются различные зубцы, повторяющиеся комбинации которых называются комплексами. Они важны для оценки частоты сердечных сокращений, ритма и проводимости. Электрокардиограф имеет три степени усиления. Стандартное усиление, при котором обычно записывают ЭКГ, — это когда электрический импульс от сердца напряжением 1 милливольт (мВ) записывается на ленте в виде зубца высотой 10 мм. Реже используются другие степени усиления, когда 1 мВ равен 5 или 20 мм. Этот режим устанавливается специальным переключателем . Электрокардиограф позволяет записывать ЭКГ со стандартной скоростью движения ленты 50 мм/сек или вдвое меньшей — 25 мм/сек.


Устройство электрокардиографа на примере ЭК1Т-03М2: 1 — включение питания; 2 — провод заземления с зажимом; 3 — шнур питания; 4 — индикаторы установки милливольта; 5 — переключатель установки милливольта; 6 — кнопки включения и выключения движения ленты для скорости 25 и 50 мм; 7 — кнопка записи милливольта; 8 — кнопка успокоителя пера; 9 — переключатели отведений; 10 — индикаторы включения отведений; 11 — электроды; 12 — регулятор положения пера; 13 — индикатор включения сети; 14 — перо; 15 — бумажная лента.

Методика регистрации ЭКГ. Положение больного во время регистрациию Больного кладут горизонтально на спину, оголяют запястья, голени и грудь. Если у больного выраженная одышка и ему нельзя ложиться, ЭКГ записывают в положении сидя.

Заземление аппарата. Если аппарат имеет питание от сети 220В, его обязательно заземляют. Для этого один конец специального заземляющего провода подключают к гнезду заземления, а другой подсоединяют к водопроводному крану или неокрашенному участку батареи центрального отопления. Следует помнить, что краска электричество не проводит. В частном доме, где нет водопровода, следует намотать заземляющий провод на лом, металлический штырь или длинный кухонный нож, воткнутый в землю во дворе. Землю вокруг следует обильно полить водой, лучше раствором соли. Все контакты должны быть плотными. Аппараты с аккумуляторным питанием заземления не требуют.

Наложение электродов на конечности. Красный — правая рука, желтый — левая рука, зеленый — левая нога, черный — правая нога. На передней панели кардиографа обычно имеется схема подключения электродов. Кожу над электродами предварительно можно обезжирить спиртом, затем смазать специальной токопроводящей пастой или подложить под электроды марлевые прокладки, смоченные водой или 5–10%-м р-ром хлорида натрия. Электроды прикрепляются резиновыми лентами или специальными зажимами на внутренние поверхности голеней и предплечий (где меньше выражен волосяной покров), в нижней их трети. В случае отсутствия у больного конечности электрод накладывается на культю. Расстояние от него до сердца не имеет принципиального значения, т. к. скорость проведения электрического импульса очень велика, а вот направление к оси сердца очень важно.

Наложение грудного электрода. Накладывается грудной электрод (обычно это груша-присоска). В случае работы на одноканальном аппарате запись грудных отведений осуществляется поочередно после записи 6 отведений от конечностей. Чаще всего записывают 6 грудных отведений. Точки установки электрода:
V1 — четвертое межреберье по правому краю грудины
V2 — четвертое межреберье по левому краю грудины;
V3 — на середине линии, соединяющей отведения V2 и V2;
V4 — пятое межреберье по левой срединно-ключичной линии;
V5 — на том же горизонтальном уровне, что и V4, по левой передней подмышечной линии;
V6 — по левой средней подмышечной линии на том же горизонтальном уровне, что и V4 и V5.

При выраженной волосистости кожи мест наложения электродов следует намочить мыльным раствором. Если это не помогает, можно попросить больного слегка прижать электрод к коже, прикасаясь пальцами только к резиновой груше. Делать это может только сам больной, от руки другого человека будут сильные помехи.

Включение питания аппарата. Сетевой электрический шнур не должен перекрещиваться с проводами электродов, т. к. это может вызвать помехи.

Запись контрольного милливольта. Для этого переключателем следует установить высоту мВ равной 10 мм (загорится соответствующий светодиод), проверить, чтобы переключатель отведений был установлен в положение 1мВ (горит соответствующий светодиод в блоке 10), выключить успокоитель пера (нажать кнопку 8, световод 0 погаснет). Если перо установлено у нижнего или верхнего краев ленты, установить его в среднее положение регулятором 12.

Включить движение ленты со скоростью 50 мм/сек и сразу же 3–4 раза быстро нажать на кнопку 7 1мВ, после чего движение ленты остановить. На ленте запишутся несколько прямоугольных зубцов высотой 10 мм, при расшифровке ЭКГ их и называют милливольтом. Это масштаб записи, он важен для дальнейших измерений и для сравнения электрокардиограмм, записанных на разных аппаратах, между собой.

Последовательная запись отведений с I по aVF. Производят последовательную запись отведений с I по аVF. Для этого переключают аппарат в режим записи I отведения (нажать кн. 9, загорится соответствующий светодиод), успокоитель пера при этом включится (загорится светодиод 0) и через секунду выключится. Если этого не произошло, его следует отключить (нажатием кн. 8). Затем включить движение ленты (кн. 6), записать 4–5 комплексов и ленту остановить. Переключить аппарат в режим записи II отведения и всю процедуру повторить. После записи III отведения следует попросить больного сделать глубокий вдох, задержать дыхание, и в таком положении записать III отведение еще раз. Затем записать усиленные отведения aVR, aVL и aVF.

При аритмии у больного в отведениях I–III записывают по 8–10 комплексов. При необходимости длительной регистрации ЭКГ ее записывают со скоростью 25 мм/сек, обычно после стандартной записи во всех отведениях.

Запись грудных отведений. Для этого переключателем отведений устанавливают положение V; включает успокоитель пера, грудной электрод ставят на грудь больного в точку записи отведения V1, выключают успокоитель, записывают на скорости 50 мм/сек 4–5 комплексов, включают успокоитель, переставляют электрод в точку V2 и всю процедуру повторяют до записи отведения V6.

Запись контрольного милливольта. Вновь записывают контрольный милливольт, ленту пропускают немного вперед и отрывают. Милливольт при этом должен быть в конце записи, а не остаться на катушке бумаги в кардиографе (очень частая ошибка), иначе его запись теряет всякий смысл.

Выключение питания. Выключают питание, снимают электроды.

Снятие электродов, оформление ленты ЭКГ. Ленту ЭКГ следует подписать. В начале указывают Ф.И.О. больного, возраст, дату и время записи. Каждое отведение подписывают. Если вы плохо ориентируетесь на готовой кардиограмме какое отведение как выглядит, их следует подписывать в процессе записи. При записи ЭКГ с нестандартной скоростью или нестандартным мВ, это следует обязательно отметить.

Кратко повторим порядок записи ЭКГ: подготовить больного, заземлить аппарат;
наложить электроды; включить питание; записать контрольный милливольт; записать последовательно 12 отведений по 4-5 комплексов; записать контрольный милливольт; обесточить аппарат, снять электроды; подписать кардиограмму.


Электрокардиограмма

Формирование электрокардиограммы

Любая ЭКГ состоит из нескольких зубцов, интервалов и сегментов, отражающих процесс распространения волны возбуждения по сердцу. Зубец Р соответствует сокращениям правого и левого предсердий. Интервал Р–Q(R) измеряется от начала зубца Р до начала комплекса QRS (зубца Q или R). Он отражает продолжительность проведения импульса возбуждения по предсердиям, атрио-вентрикулярному-узлу, пучку Гиса до желудочков.

Комплекс QRST соответствует систоле желудочков. Волна возбуждения распространяется по желудочкам в разных направлениях в разные моменты времени, при этом на ЭКГ формируются зубцы Q, R и S. Зубцы Q и S отражают начало и конец распространения возбуждения по межжелудочковой перегородке, а зубец R — по миокарду левого и правого желудочков. Но поскольку левый желудочек является более мощным отделом сердца, можно упрощенно считать, что зубец R отражает в основном систолу левого желудочка. В зависимости от проекции векторов распространения волны возбуждения на оси различных электрокардиографических отведений зубцы Q, R и S в разных отведениях могут иметь различную амплитуду, некоторые зубцы могут отсутствовать совсем.


Формирование зубцов Q, R и S на электрокардиограмме.

Сегмент (R)S-Т — отрезок от конца комплекса QRS, т. е. от конца зубца S, а если его нет, то от конца зубца R до начала зубца Т. Он соответствует периоду полного охвата возбуждением обоих желудочков. Разность потенциалов на поверхности миокарда при этом очень мала, поэтому в норме на ЭКГ сегмент (R)S-Т расположен на изолинии.

Зубец Т отражает процесс реполяризации миокарда желудочков. Иногда позади зубца Т записывается небольшой зубец U. Его происхождение не совсем ясно, он не имеет большого диагностического значения, но его не следует путать с зубцом Р. Сегмент Т-Р от конца зубца Т до начала зубца Р соответствует электрической диастоле сердца. В разных отведениях форма, амплитуда и соотношения зубцов различны. Зубцы, направленные вверх от изолинии, называются положительными, а вниз от нее — отрицательными.

Электрокардиографические отведения. Изменения разности потенциалов на поверхности тела, возникающие во время работы сердца, записываются с помощью различных отведений. Электроды, установленные в выбранных точках на теле человека, подключаются к гальванометру электрокардиографа: один из электродов — к положительному полюсу гальванометра (этот электрод называют активным), другой — к отрицательному.


Электрическая ось сердца (средний результирующий вектор комплекса QRS). Стандартные отведения от конечностей.

Если постараться определить средний вектор распространения волны возбуждения по желудочкам, состоящий из векторов, формирующих зубцы Q, R и S, то упрощенно можно считать, что в норме волна возбуждения распространяется по желудочкам влево и вниз под углом 30–70°C к горизонтали. Это примерно соответствует ориентации анатомической оси сердца. Можно считать, что положительный полюс электрической оси сердца обращен к верхушке, а отрицательный — к основанию сердца.


Электрическая ось сердца (средний результирующий вектор комплекса QRS). Усиленные отведения от конечностей.

Электрические оси I, II и III стандартных отведений расположены по-разному по отношению к электрической оси сердца, поэтому на электрокардиограмме одно и то же сокращение желудочков в разных отведениях будет записано с разной амплитудой. Высота зубцов будет наибольшей в том отведении, ось которого более всего совпадает с электрической осью сердца (ЭОС). Усиленные отведения aVR, aVL и aVF регистрируют разность потенциалов между одной из конечностей, на которой установлен положительный (активный) электрод данного отведения, и средним потенциалом двух других конечностей. Для этого их электроды подключаются вместе к отрицательному полюсу гальванометра. На схемах видно, что ось отведения aVR направлена снизу-вверх-направо, т. е. противоположно направлению ЭОС, поэтому большинство зубцов на кардиограмме будут иметь отрицательную амплитуду, а ось отведения aVL направлена почти перпендикулярно ЭОС, поэтому сумма всех зубцов комплекса QRS (сокращения желудочков) будет близка к нулю.

Если вы не сразу поняли изложенный материал, прочитайте этот раздел еще раз, внимательно рассмотрите схемы, представьте в груди сердце, по которому распространяется волна возбуждения сверху-вниз-налево, представьте электроды на ногах и руках и оси отведений (Кстати, раскинуты руки в стороны, или опущены вниз, или подняты никакого значения не имеет). Понимание принципов формирования ЭКГ в различных отведениях очень важно для расшифровки ЭКГ. Электрокардиографические отведения I, II, III, aVR, aVL и aVF позволяют сделать как бы срез сердца во фронтальной плоскости, определить положение ЭОС. Черный электрод на правой ноге во всех случаях используется как нейтральный. Грудной электрод отключен, поэтому его неисправность не влияет на запись ЭКГ в 6 отведениях от конечностей.

При записи ЭКГ в грудных отведениях все электроды на конечностях объединяются и подключаются к отрицательному полюсу гальванометра, а грудной электрод-груша — к положительному полюсу (он становится активным). Получается срез сердца в горизонтальной плоскости. Необходимо запомнить два важных момента. Первый: направление ЭОС более всего совпадает с направлением электрической оси отведения V4, следовательно в нем амплитуда зубцов желудочкового комплекса QRS будет наибольшей. Второй: схема включения электродов при записи грудных отведений очень напоминает схему при записи усиленных отведений от конечностей. В обоих случаях к положительному полюсу подключается активный электрод, а к отрицательному — все остальные электроды вместе. Это позволяет выйти из положения в случае неисправности грудного электрода. Для этого грушу с грудного электрода переставляют на зеленый электрод, который снимают с левой ноги. Грудной электрод оставляют свободно лежать, переключатель отведений на электрокардиографе устанавливают в положение aVF, ставят грушу с зеленым электродом в точки V1–V6 и последовательно записывают все 6 грудных отведений. Электрокардиограмма при этом практически не отличается от записанной обычным способом.


Формирование электрокардиограммы в грудных отведен

электрокардиография — это… Что такое электрокардиография?


электрокардиография

ЭЛЕКТРОКАРДИОГРА́ФИЯ -и; ж. Метод исследования физиологических свойств сердца путём графической регистрации электрических импульсов, возникающих в сердечной мышце при её работе.

* * *

электрокардиогра́фия

метод исследования сердечной мышцы путём регистрации биоэлектрический потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической плёнке кривая называется электрокардиограммой (ЭКГ). Играет важную роль в диагностике многих заболеваний сердца.

* * *

ЭЛЕКТРОКАРДИОГРАФИЯ ЭЛЕКТРОКАРДИОГРА́ФИЯ, метод исследования сердечной мышцы путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (см. ЭЛЕКТРОКАРДИОГРАММА) (ЭКГ). Играет важную роль в диагностике многих заболеваний сердца.

Энциклопедический словарь. 2009.

Синонимы:
  • электрокапиллярные явления
  • электрокинетические явления

Смотреть что такое «электрокардиография» в других словарях:

  • электрокардиография — электрокардиография …   Орфографический словарь-справочник

  • ЭЛЕКТРОКАРДИОГРАФИЯ — ЭЛЕКТРОКАРДИОГРАФИЯ, метод инструментальной диагностики путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (ЭКГ) …   Современная энциклопедия

  • ЭЛЕКТРОКАРДИОГРАФИЯ — метод исследования сердечной мышцы путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (ЭКГ). Играет важную роль в… …   Большой Энциклопедический словарь

  • электрокардиография — сущ., кол во синонимов: 3 • кардиография (7) • радиоэлектрокардиография (2) • …   Словарь синонимов

  • ЭЛЕКТРОКАРДИОГРАФИЯ — ЭЛЕКТРОКАРДИОГРАФИЯ, регистрация электрических явлений, появляющихся в сердце при его возбуждении, имеющая большое значение в оценке состояния сердца. Если история электрофизиологии начинается с знаменитого опыта Гальвани (Garvani), доказавшего в …   Большая медицинская энциклопедия

  • Электрокардиография — ЭЛЕКТРОКАРДИОГРАФИЯ, метод инструментальной диагностики путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (ЭКГ).   …   Иллюстрированный энциклопедический словарь

  • Электрокардиография — Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет, без патологии. Элѐктрокардиография  методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой… …   Википедия

  • Электрокардиография — (от Электро…, Кардио… и …графия         метод исследования сердечной мышцы путём регистрации биоэлектрических потенциалов (См. Биоэлектрические потенциалы) работающего сердца. Сокращению сердца (систоле (См. Систола)) предшествует… …   Большая советская энциклопедия

  • Электрокардиография — I Электрокардиография Электрокардиография метод электрофизиологического исследования деятельности сердца в норме и патологии, основанный на регистрации и анализе электрической активности миокарда, распространяющейся по сердцу в течение сердечного …   Медицинская энциклопедия

  • электрокардиография — (электро… гр. kardia сердце + …графия) метод определения функционального состояния сердца, заключающийся в регистрации электрических явлений, возникающих в сердце при его деятельности, спец. прибором электрокардиографом. Новый словарь… …   Словарь иностранных слов русского языка


электрокардиография — это… Что такое электрокардиография?


электрокардиография
электрокардиогра́фия

(электро… гр. kardia сердце + …графия) метод определения функционального состояния сердца, заключающийся в регистрации электрических явлений, возникающих в сердце при его деятельности, спец. прибором — электрокардиографом.

Новый словарь иностранных слов.- by EdwART, , 2009.

электрокардиография

[гр. сердце + пишу] – мед. метод определения состояния сердца, заключающийся в регистрации электрических явлений, возникающих в сердце при его возбуждении

Большой словарь иностранных слов.- Издательство «ИДДК», 2007.

электрокардиография
и, мн. нет, ж. ( электро… + кардиография).
мед. Метод определения функционального состояния сердца, заключающийся в регистрации электрических явлений, возникающих в сердце при его деятельности, специальным прибором — электрокардиографом.
Электрокардиографический — относящийся к электрокардиографии.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык, 1998.

.

Синонимы:
  • электрокардиограмма
  • электрокаустика

Смотреть что такое «электрокардиография» в других словарях:

  • электрокардиография — электрокардиография …   Орфографический словарь-справочник

  • ЭЛЕКТРОКАРДИОГРАФИЯ — ЭЛЕКТРОКАРДИОГРАФИЯ, метод инструментальной диагностики путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (ЭКГ) …   Современная энциклопедия

  • ЭЛЕКТРОКАРДИОГРАФИЯ — метод исследования сердечной мышцы путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (ЭКГ). Играет важную роль в… …   Большой Энциклопедический словарь

  • электрокардиография — сущ., кол во синонимов: 3 • кардиография (7) • радиоэлектрокардиография (2) • …   Словарь синонимов

  • ЭЛЕКТРОКАРДИОГРАФИЯ — ЭЛЕКТРОКАРДИОГРАФИЯ, регистрация электрических явлений, появляющихся в сердце при его возбуждении, имеющая большое значение в оценке состояния сердца. Если история электрофизиологии начинается с знаменитого опыта Гальвани (Garvani), доказавшего в …   Большая медицинская энциклопедия

  • Электрокардиография — ЭЛЕКТРОКАРДИОГРАФИЯ, метод инструментальной диагностики путем регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотографической пленке кривая называется электрокардиограммой (ЭКГ).   …   Иллюстрированный энциклопедический словарь

  • Электрокардиография — Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет, без патологии. Элѐктрокардиография  методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой… …   Википедия

  • Электрокардиография — (от Электро…, Кардио… и …графия         метод исследования сердечной мышцы путём регистрации биоэлектрических потенциалов (См. Биоэлектрические потенциалы) работающего сердца. Сокращению сердца (систоле (См. Систола)) предшествует… …   Большая советская энциклопедия

  • Электрокардиография — I Электрокардиография Электрокардиография метод электрофизиологического исследования деятельности сердца в норме и патологии, основанный на регистрации и анализе электрической активности миокарда, распространяющейся по сердцу в течение сердечного …   Медицинская энциклопедия

  • электрокардиография — и; ж. Метод исследования физиологических свойств сердца путём графической регистрации электрических импульсов, возникающих в сердечной мышце при её работе. * * * электрокардиография метод исследования сердечной мышцы путём регистрации… …   Энциклопедический словарь


Электрокардиография — Википедия

Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет

Электрокардиогра́фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ).

История

В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

Опыты продолжил Виллем Эйнтховен, сконструировавший прибор (струнный гальванометр), позволявший регистрировать истинную ЭКГ. Он же ввел современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. В 1924 году ему присудили Нобелевскую премию по медицине[1].

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

Прибор

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные самописцы, теперь, как правило, электрокардиограмма записывается на термобумаге. Скорость движения бумаги составляет обычно 50 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 25 мм/с или 100 мм/с. В начале каждой записи регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 или, реже, 20 мм/мВ. Медицинские приборы имеют определённые метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца[2]. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере.

Электроды

Для измерения разности потенциалов на различные участки тела накладываются электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости на участки кожи в местах контакта наносят токопроводящий гель. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5—1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50—60 Гц нивелирует сетевые наводки. Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Соответствие участков ЭКГ с соответствующей фазой работы сердца.

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает процесс деполяризации миокарда предсердий, комплекс QRS — деполяризации желудочков, сегмент ST и зубец T отражают процессы реполяризации миокарда желудочков. Мнения исследователей относительно природы возникновения зубца U различаются. Одни считают, что он обусловлен реполяризацией папиллярных мышц или волокон Пуркинье; другие — что связан с вхождением ионов калия в клетки миокарда во время диастолы.

Процесс реполяризации (Repolarization) — фаза, во время которой восстанавливается исходный потенциал покоя мембраны клетки после прохождения через неё потенциала действия. Во время прохождения импульса происходит временное изменение молекулярной структуры мембраны, в результате которого ионы могут свободно проходить через неё. Во время реполяризации ионы диффундируют в обратном направлении для восстановления прежнего электрического заряда мембраны, после чего клетка оказывается готова к дальнейшей электрической активности.

Отведения

Каждая из измеряемых разностей потенциалов в электрокардиографии называется отведением.

Отведения I, II и III накладываются на конечности: I — правая рука (-, красный электрод) — левая рука (+, желтый электрод), II — правая рука (-) — левая нога (+, зеленый электрод), III — левая рука (-) — левая нога (+). С электрода на правой ноге показания не регистрируются, его потенциал близок к условному нулю, и он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов (система Вильсона) или относительно усредненного потенциала двух других электродов (система Гольдбергера, дает амплитуду примерно на 50 % большие). Следует заметить, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть, зная сигналы только в каких-либо двух отведениях, можно, путём сложения/вычитания, найти сигналы в остальных четырех отведениях.

При так называемом однополюсном отведении регистрирующий (или активный) электрод определяет разность потенциалов между точкой электрического поля, к которой он подведён, и условным электрическим нулём (например, по системе Вильсона).

Однополюсные грудные отведения обозначаются буквой V.

Схема установки электродов V1—V6.
Отведения Расположение регистрирующего электрода
V1 В 4-м межреберье у правого края грудины
V2 В 4-м межреберье у левого края грудины
V3 На середине расстояния между V2 и V4
V4 В 5-м межреберье по срединно-ключичной линии
V5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, хотя они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1—2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в 1954 году J. Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются.
  • Отведения по Небу — Гуревичу. Предложены в 1938 году немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям — задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркта миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Линейка для ЭКГ с номограммами, облегчающими определение ЭОС

Электрическая ось сердца — проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная — с углом 0°…30°). Отклонение от нормы может означать как наличие каких-либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо — соответственно левограммой или правограммой.

Другие методы

Внутрипищеводная электрокардиография

Активный электрод вводится в просвет пищевода. Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения. Важен при диагностике некоторых видов блокад сердца.

Векторкардиография

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование

На грудную клетку пациента закрепляются электроды (обычно матрица 6х6), сигналы от которых обрабатываются компьютером. Используется в частности, как один из методов определения объёма повреждения миокарда при остром инфаркте миокарда. К текущему моменту расценивается как устаревший.

Пробы с нагрузкой

Велоэргометрия используется для диагностики ИБС.

Холтеровское мониторирование

Система холтеровского мониторирования

Синоним — суточное мониторирование ЭКГ по Холтеру.

На теле пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от одного, двух, трёх или более отведений в течение суток или более. Дополнительно регистратор может иметь функции мониторирования артериального давления (СМАД). Одновременная регистрация нескольких параметров является перспективной в диагностике заболеваний сердечно-сосудистой системы.

Стоит упомянуть о семисуточном мониторировании ЭКГ по Холтеру, которое даёт исчерпывающую информацию об электрической деятельности сердца.

Результаты записи передаются в компьютер и обрабатываются врачом при помощи специального программного обеспечения.

Гастрокардиомониторирование

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке, для чего используется рН-зонд, введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Электрокардиография высокого разрешения

Метод регистрации ЭКГ и её высокочастотных, низкоамплитудных потенциалов, с амплитудой порядка 1—10 мкВ и с применением многоразрядных АЦП (16—24 бита).

См. также

Примечания

Литература

  • Зудбинов Ю.И. Азбука ЭКГ. — Издание 3. — Ростов-на-Дону: «Феникс», 2003. — 160 с. — 5000 экз. — ISBN 5-222-02964-6.
  • Мясников А. Л. Экспериментальные некрозы миокарда. — М. Медицина, 1963.
  • Синельников Р. Д. Атлас анатомии человека. — М. Медицина, 1979. — Т. 2.
  • Brawnwald L. D. Heart disease. — 1992. — С. 122.
  • Спасский К. В. Про роль потенціалу фільтрації в походженні массажних хвиль та хвилі U, електрокардіограми, його вплив напараметри кінцевої частини шлуночкового комплексу. — Наукові записки Острозької академії, 1998. — Т. 1.
  • Спасский К. В. Роль потенциала фильтрации в происхождении волн реполяризации и массажных волн. — Минск: Медико-социальная экспертиза и реабилитация. Выпуск №3. часть №2, 2001.
  • Спасский К. В. Роль потенціалу плину у формуванні хвиль кінцевої частини шлуночкового комплексу ЄКГ. — Минск: Вісник університету „Україна”, 2007.

Ссылки

Медицинская физика

ЯГМА

Лекция

« Электрокардиограф »

Составил: Бабенко Николай Иванович

ЯРОСЛАВЛЬ

2003 г.

1. Электрокардиография.

Среди многочисленных диагностических методов исследования больных одно из ведущих мест принадлежит электрокардиографии.

Электрокардиография – это система методов регистрации электрических потенциалов, возникающих в работающем сердце и их диагностика. Графическая запись разности потенциалов между различными участками сердечной мышцы в процессе ее возбуждения называется электрокардиограммой.

Cердечная мышца обладает четырьмя основными функциями, определяющими особенность её работы: автоматизм, возбудимость, проводимость, сократимость.

  1. Автоматизм – это способность сердца вырабатывать электрические импульсы при отсутствии внешних раздражителей.

  2. Проводимость – это способность к проведению возбуждения, возникшего в каком-либо участке сердца, к другим отделам сердечной мышцы.

  3. Возбудимость – это способность сердца возбуждаться под влиянием электрических импульсов. Функцией возбудимости обладают клетки как проводящей системы сердца, так и сократительного миокарда.

  4. Сократимость — это способность сердечной мышцы сокращаться в ответ на электрическое возбуждение.

Кривая биопотенциалов сердечных мышц ( электрокардиограмма ) является суммой напряжений многих миллионов мышечных волокон. Суммарные кривые, полученные при обследовании большого количества пациентов, весьма похожи. Усредненная типовая кривая имеет следующий вид.

R

T

P U P

Q

S

На типичной ЭКГ можно заметить 6 характерных зубцов, которые по предложению Эйтховена обозначаются буквами: P, Q, R, S, T, U.

По сравнению с типичными ЭКГ здоровых людей, ЭКГ больного показывает характерные отклонения от нормы, т.е. анализ ЭКГ может дать важную информацию для диагностики. При оценке ЭКГ принимают во внимание наличие, форму, величину отдельных зубцов, интервал между ними.

С ЭКГ следует обращаться очень осторожно, т.к. нестандартная ЭКГ не означает наличия болезни, а нормальная ЭКГ не всегда свидетельствует об отсутствии заболевания.

Получение ЭКГ осуществляется с помощью электротехнического устройства, которое называется электрокардиографом.

Электрокардиограф – это электрический прибор, предназначенный для регистрации разности электрических потенциалов (биопотенциалов) сердца. Изобретен Эйтховеном в начале прошлого века.

Рассмотрим типовую блок-схему электрокардиографа.

1

1 – воспринимающее устройство. Оно состоит из нескольких электродов, соединенных проводами разного цвета с переключателем отведений.

2 – переключатель отведений. Это механическая система выбора нужного отведения, позволяет записывать (считывать) необходимые биопотенциалы сердца без перемещения электродов.

3 – усилитель биопотенциалов. Предназначен для усиления слабых электрических сигналов от 0.1 до 3 мВ. Полоса пропускания усилителя 0.15 – 300 гЦ. Коэффициент усиления по напряжению 30000.

4 – блок питания. Состоит из выпрямителя или аккумуляторов. Предназначен для питания следующих элементов кардиографа: усилителя, дополнительного устройства, регистрирующего устройства.

5 – регистрирующее устройство. Преобразует электрические сигналы в механические колебания пера самописца или в долговременную память компьютера.

6 – дополнительное устройство. Его основные узлы:

  • отметчик времени. Это электромеханическое устройство делающее отметки времени в виде штрихов на бумажной ленте ЭКГ. Это дает развёртку ЭКГ во времени.

  • калибратор напряжения. Предназначен для проверки и настройки усилителя. При нажатии кнопки калибратора на вход усилителя подается прямоугольный эталонный импульс 1 мВ (контрольный милливольт). Это должно вызвать отклонение регистрирующей системы на 10 мм. Регулировка осуществляется плавной настройкой коэффициента усиления усилителя. Калибровка усиления позволяет сравнивать между собой ЭКГ, записанные у пациента в предыдущие времена.

Кардиографы подразделяются на переносные и стационарные. Переносные имеют вес до 4 кг, используются на машинах «скорой помощи». Стационарные кардиографы устанавливаются в специальных помещениях, удаленных от возможных источников электрических помех: электромоторов, физиотерапевтических и рентгеновских кабинетов, распределительных электрощитов.

По числу одновременно проводимых записей электрокардиографы бывают:

  1. одноканальные, запись только от одного отведения;

  2. многоканальные, запись до 6 отведений одновременно;

  3. полиграфы,т.е. с одновременной регистрацией фонокардиограммы.

Переносные кардиографы, как правило, одноканальные.

Leave a Reply

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *